728x90 반응형 sklearn2 [Ensemble] Random Forests in Python (scikit-learn) Setupbagging과 random forest를 실습하기 위해 필요한 라이브러리를 import하자.# To support both python 2 and python 3from __future__ import division, print_function, unicode_literals# Common importsimport numpy as npimport os# to make this notebook's output stable across runsnp.random.seed(42)# To plot pretty figures%matplotlib inlineimport matplotlib as mplimport matplotlib.pyplot as pltfrom matplotlib.colors impor.. 2023. 5. 13. [Machine Learning] SVM in Python (1) Decision Boundary Synopsissklearn의 iris dataset으로 간단히 binary classification을 해보자.import numpy as npimport matplotlib.pyplot as pltfrom sklearn.svm import SVCfrom sklearn import datasetsfrom sklearn.metrics import confusion_matrix SVC의 defalut kernel은 'rbf'이지만 linear로 먼저 살펴보자# Load Iris datasetiris = datasets.load_iris()X = iris["data"][:, (2, 3)] # petal length, petal widthy = iris["target"]# setosa 와 versicolor.. 2023. 5. 10. 이전 1 다음 728x90 반응형