본문 바로가기
728x90
반응형

recsys7

[CS224W] GNN for RecSys (4) - LightGCN LightGCN: Simplifying and Powering Graph Convolution Network for RecommendationMotivationshallow embeddings은 그 자체로 꽤 좋은 표현력(expressive)를 가진다.노드 개수를 $N$, 임베딩 차원을 $D$라 하면- shallow embedding: $O(ND)$- GNN: O(D^2)GNN의 파라미터는 충분하지 않을 수 있다그러면 GNN으로 NGCF의 파라미터를 줄일 수 있을까? YES!게다가 단순화(simplification)은 추천 성능을 향상시킬 수 있다. LightGCN의 idea는 크게 3가지이다.- 이분그래프에서의 인접행렬(adjacency matrix)- GCN의 행렬 곱셈(matrix formulati.. 2024. 11. 9.
[CS224W] GNN for RecSys (2) - Embedding-Based Models Embedding-Based Models, Surrogate Loss Functions, BPR LossNotation and Score Function$U$를 모든 user의 집합, $V$를 모든 item의 집합, 그리고 $E$를 관찰한(observed) user-item 상호작용 집합이라 하자.top-K item을 추천한다고 하자.유저 $u$에게 추천할 item은 $\text{score}(u, v)$가 가장 큰 순서대로 $K$개의 item을 추천해주면 된다.이때, 추천해줄 item은 이미 상호작용한 item은 제외해야한다. (excluding already interacted items)위 그림의 경우, 실선은 already interacted edge이고, 점선은 interaction되지 않은 ed.. 2024. 11. 7.
[CS224W] GNN for RecSys (1) - Task and Evaluation GNN for Recommender Systems: Task and EvaluationPreliminary추천시스템은 기본적으로 이분그래프(bipartite graph)의 구조를 갖는다.이분 그래프는 2개의 노드 종류를 갖는다: users, items이분 그래프의 edge는 user와 item을 연결한다.user-item의 상호작용(interaction)일 수도 있고, timestamp와 연관지을 수도 있다.추천시스템의 목적은 다음과 같다.과거의 user-item 상호작용이 주어질 때, 새로운 user-item 상호작용을 예측한다.(보통 기존 user가 new item과 상호작용을 할지 말지)이를 link prediction으로 환원하여 생각할 수 있다.user와 item의 집합을 $U,\ V$라 하자... 2024. 11. 6.
[CS246] RecSys (4) - Latent Factor Models (Matrix Factorization, MF, UV decomposition) 이번 포스팅은 2006년에 넷플릭스 대회를 통해 실제 추천시스템 대회에서 utility matrix의 형태와 평가기준(evaluation criterion)에 대해 살펴본다.그리고 넷플릭스 utitlity matrix를 채우는 방법으로 UV decomposition을 소개하고, 이를 이용한 모델을 설명한다. ※ Matrix Factorization (MF)은 종종 UV decomposition 등으로 불린다.※ MF로 얻는 두 행렬은 Google에서는 U와 V, wiki에서는 H와 W로 표기한다. 여기서는 CS246의 표기(P와 Q)를 따른다.The Netflix PrizeTraining data100M개의 ratings (1-5의 평점을 가짐)user 수: 480Kmovie 수: 18KTest data.. 2023. 10. 24.
[CS246] RecSys (3) - Collaborative Filtering (CF) Collaborative FilteringContent-based 방법은 다른 user의 정보를 이용하지 않고 item profile을 이용했다. (user profile도 사실상 item profile에서 만들었음). Collaborative Filtering(CF)은 다른 user의 정보를 이용하여 item을 추천해주는 방법이다. 이 방법은 item이나 user profile을 만들지 않는다. 대신에 utility matrix의 row/column을 이용한다. user-user collaborative filtering과 item-item collaborative filtering 이렇게 2가지 방법이 존재한다.User-User Collaborative Filteringuser X의 rating과 유.. 2023. 10. 13.
[CS246] RecSys (2) - Content-based Approach Main ideaitem은 profile(혹은 feature라고도 부른다.)을 갖는다.item이 video라면 [장르, 감독, 배우, 줄거리, 개봉연도 등] 의 profile을 갖고,item이 new라면 [keyword 집합] 을 profile로 가질 수 있다. 추천시스템은 customer $x$에게 과거 높은 점수(highly rated)를 가진 item과 유사한 item을 추천해주는 방법이다.Item Profiles이제 item profile을 만들어보자. Profile은 feature의 집합(또는 feature vector)로 나타낼 수 있다.위에서 언급한 movie의 profile은  [장르, 감독, 배우, 줄거리, 개봉연도 ] 이므로 vector이고,text document와 같은 경우 {key.. 2023. 10. 13.
728x90
반응형