728x90 반응형 bias2 [CS246] RecSys (4) - Latent Factor Models (Matrix Factorization, MF, UV decomposition) 이번 포스팅은 2006년에 넷플릭스 대회를 통해 실제 추천시스템 대회에서 utility matrix의 형태와 평가기준(evaluation criterion)에 대해 살펴본다.그리고 넷플릭스 utitlity matrix를 채우는 방법으로 UV decomposition을 소개하고, 이를 이용한 모델을 설명한다. ※ Matrix Factorization (MF)은 종종 UV decomposition 등으로 불린다.※ MF로 얻는 두 행렬은 Google에서는 U와 V, wiki에서는 H와 W로 표기한다. 여기서는 CS246의 표기(P와 Q)를 따른다.The Netflix PrizeTraining data100M개의 ratings (1-5의 평점을 가짐)user 수: 480Kmovie 수: 18KTest data.. 2023. 10. 24. Inferences Based on the MLE (MSE, Standard Error, Consistency, Confidence Interval) MSE and Unbiased EstimatorMLE를 통해 추정량 $\hat{\theta}$를 구할 수 있었다. 우리는 이렇게 구한 추정량이 실제 참 값 $\theta$가 되기를 원한다. 이를 평가하기 위한 measure가 필요하다. (to evaluate MLE, which is good and bad) Mean-squared error (MSE, 평균제곱오차)$\theta$에 대한 추정량 $\hat{\theta}$의 평균제곱오차 MSE는 다음과 같다.\[ \text{MSE}(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] \]Decomposition of MSE\[ \text{MSE}(\hat{\theta}) = Var(\hat{\theta}) + [\text{Bia.. 2023. 5. 23. 이전 1 다음 728x90 반응형