728x90 반응형 aperiodic1 [Sampling] Markov Chain Monte Carlo (MCMC) (1) - Markov chains Motivation(앞에서와 마찬가지로) Monte-Carlo method로 기댓값을 근사하고 싶다.\[ \cfrac{1}{n} \sum_{i=1}^{n} f(x_i) \overset{\text{a.s.}}{\to} \mathbb{E}_{p(x)}[f(x)], \quad x_1, \dots, x_n \overset{\text{i.i.d.}}{\sim} p(x) \] rejection sampling과 importance sampling은 $p(x)$ 대신 샘플링이 쉬운 $q(x)$를 이용했다. (indirectly sample from distributions easier to sample) 그러나 i.i.d. 샘플링은 고차원 데이터(high-dimensional data)에는 적합하지 않다. 이전 샘플.. 2023. 9. 28. 이전 1 다음 728x90 반응형